skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Brandenburg, Björn B"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Brandenburg, Björn B (Ed.)
    Safety-critical embedded systems such as autonomous vehicles typically have only very limited computational capabilities on board that must be carefully managed to provide required enhanced functionalities. As these systems become more complex and inter-connected, some parts may need to be secured to prevent unauthorized access, or isolated to ensure correctness. We propose the multi-phase secure (MPS) task model as a natural extension of the widely used sporadic task model for modeling both the timing and the security (and isolation) requirements for such systems. Under MPS, task phases reflect execution using different security mechanisms which each have associated execution time costs for startup and teardown. We develop corresponding limited-preemption EDF scheduling algorithms and associated pseudo-polynomial schedulability tests for constrained-deadline MPS tasks. In doing so, we provide a correction to a long-standing schedulability condition for EDF under limited-preemption. Evaluation shows that the proposed tests are efficient to compute for bounded utilizations. We empirically demonstrate that the MPS model successfully schedules more task sets compared to non-preemptive approaches. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026